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Abstract—Friction losses for the flow of concentrated slurries of laterite and gypsum through 2.5 and
5.0 cm bends, fittings, valves and Venturi meters were determined. The experimental work was carried
out using a slurry flow facility consisting of several flow loops throughout which the different piping
elements had been installed. The friction losses for each piping element are based on detailed
measurements of the axial pressure distributions along the element including that along upstream and
downstream tangent lines consisting of long sections of straight pipe of the same diameter. Pressure losses
for the fully-developed flow through straight pipe test sections were also measured to use as baselines.
For flow through 45° and 180° bends, 90° bends of different radii of curvature, and gate and globe valves,
resistance coefficients, based on slurry density, were found to be inversely proportional to the generalized
Reynolds number for laminar flow, and to approach constant asymptotic values for turbulent flow. The
latter were the same as the high-Reynolds number limiting values for flow of water through the respective
fitting. Correlations for resistance coefficients for slurry flow through concentric 5.0×2.5 cm2 sudden
contraction and 2.5×5.0 cm2 sudden enlargement were also established. Discharge coefficients for flow
of slurries and water through 2.5 and 5.0 cm Venturi meters with throat to pipe diameter ratios of 0.5
and 0.75 were also determined. For slurries the discharge coefficients increased with increasing flow rate
and approached asymptotic values at high flow rates which were the same as the values for highly turbulent
flow of water. 7 1998 Elsevier Science Ltd. All rights reserved

Key Words: non-Newtonian slurries, flow through bends, valves, Venturi meters, resistance coefficients,
discharge coefficients

1. INTRODUCTION

Pressure losses for the flow of concentrated mineral slurries of laterite and gypsum through an array
of piping elements were measured. Altogether data on a total number of 24 different piping
elements were taken. These consisted of 2.5 and 5.0 cm diameter sizes of each of the following:
45° bends (2), 180° return bends (2), 90° bends in five different radius of curvature to pipe diameter
ratios (10), gate and globe valves (4), Venturi meters in two different throat to pipe diameter ratios
(4), and a 2.5×5.0 cm2 concentric sudden enlargement and a 5.0×2.5 cm2 concentric sudden
contraction (2). A critical experimental investigation on such a large array of piping elements is
a rather major undertaking. This is not only because it is necessary to collect a lot of data for each
fitting to insure that broad enough ranges of Reynolds numbers and slurry concentrations have
been covered, but also because for each flow rate multiple pressure drop measurements must be
taken to establish detailed information on axial pressure gradients along the upstream as well as
the downstream tangent lines connecting the piping element to the flow system. Almost no
published information on friction losses for the flow of non-Newtonian fluids or fine particulate
and colloidal suspensions through flow disturbances is available, and what little exists is rather
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sparse. We have published the results of an extensive study on friction losses for the flow of
coarse-particle slurries through arrays of piping elements in the past (Turian et al. 1983), but these
involved noncolloidal, settling slurries of narrow-sized glass beads in water. As nonuniforn,
non-continuum dispersed systems, these slurries were neither amenable to rheological measurement
nor to classification.

1.1. Classification of piping elements and flow disturbances

Pressure losses in piping systems result from wall friction, changes in direction of the flow,
obstructions in the flow path, and sudden or gradual changes in cross-section or shape of the flow
duct. Pipe fittings may be classified as branching, reducing, expanding or deflecting types. Reducers,
bushings, enlargements and contractions are fittings which change the area of the flow passage and
belong to the reducing or expanding class of fittings. Elbows, bends, return bends and other fittings
which cause a change in the direction of the flow are of the deflecting type. Aside from these there
are a number of fittings and piping elements which possess combinations of the attributes of the
general classes enumerated here, and also types, such as couplings and unions, which ordinarily
present little resistance to the flow.

The literature on Newtonian flow through piping systems and pipeline transitions is extensive,
and embodies experimental and theoretical studies as well as extensive tabulations of resistance
coefficients and empirical correlations. We will present a review of some pertinent parts of this
published work because it provides guides to our present studies, and because friction losses for
Newtonian flows constitute references against which losses for non-Newtonian flows through
complex geometries are measured.

The presence of a fitting usually results in disturbance to the flow, and this is manifested by a
friction loss in excess of that attributable to flow through a straight pipe segment having the same
physical path length. It is not possible to isolate a fitting within a piping system, and therefore it
is not possible to measure directly the friction losses solely attributable to it. The disturbance
resulting from the presence of a fitting affects the flow upstream as well as that downstream of
the fitting; the downstream effect usually projecting over a longer segment of connecting piping.
To obtain data capable of unambiguous accounting for the friction losses associated with the
connecting piping, and thereby to establish the reference for calculating the correct friction loss
due to the fitting alone, both upstream and downstream straight pipe sections, or so-called tangent
lines, must be long enough to insure that fully developed flow exists at least at some point within
the connecting straight pipes. It is not enough to measure the pressure drop merely across the
disturbance itself. Indeed, for each flow rate it is necessary to measure the variation of the axial
pressure drop along the upstream as well as the downstream tangent lines, in order to establish
the lengths of connecting tangent lines affected by the disturbance, and by how much.

1.2. Friction losses in fittings—the macroscopic balances

Our reference for accounting for the various losses in a piping system is the steady state
macroscopic mechanical energy balance, which under isothermal conditions, and no work involved,
is given by (Bird et al. 1960)

(P1/r1)+ (gZ1)+ (V2
1 /2)= (P2/r2)+ (gZ2)+ (V2

2 /2)+ hf. [1]

The subscript 1 designates the position upstream and 2 the position downstream of the fitting, and
hf is the friction loss per unit mass of fluid. Strictly, the velocity head terms in [1] should include
kinetic energy correction factors to account for possible non-flat velocity profiles at sections 1 and
2. This equation applies to Newtonian and non-Newtonian fluids and to suspensions.

For the steady flow of an incompressible fluid through a section of circular pipe of diameter D
and length L, lying in a horizontal plane so that Z1 =Z2, we have V1 =V2 =V, and [1] gives

hf = (P1 −P2)/r=(V2/2)[4(L/D)f ] [2]

in which the friction factor is defined by

f= tw/(rV2/2)= [(−DP/L)(D/4)]/(rV2/2). [3]

A typical experimental assembly surrounding a fitting, such as a bend or valve, lying in a
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horizontal plane with its connecting tangent lines is represented schematically in figure 1. The axial
pressure profile along this section of pipe is also given in this diagram. As explained below, fittings
which result in change of cross-section, and piping sections which do not lie entirely in a horizontal
plane, can also be subsumed within this scheme provided the total head, instead of merely the
pressure, is plotted in the diagram. In figure 1 the curve ABCD represents the axial pressure profile
between upstream and downstream pressure taps for the piping section containing the disturbance,
and the curve AB'C'D' represents the profile for the case when the fitting is replaced by a
continuous section of straight pipe. If the fitting were removed altogether there would be no loss
for the section of piping corresponding to its actual physical length, and the pressure profile would
follow the curve AB'C0D0. It should be observed that the slope of the line segment AB', which
gives the pressure gradient along the upstream tangent undisturbed by the presence of the fitting
(where the flow enters as fully-developed), is the same as the slope of the line segment ED, to which
the axial pressure curve ABCD asymptotically tends. Thus, the downstream station 2 is taken at
a point where the effect of the fitting is no longer felt, and the flow has reverted to fully-developed
conditions.

According to figure 1 the overall pressure drop caused by the disturbance consists of three
contributions.

(1) The pressure drop in the piping upstream of the disturbance in excess of that which would
occur in the absence of the fitting; given by (−DP)u or BB'. This effect is usually small and results
from propagation of the disturbance upstream of the piping element.

(2) The pressure drop within the disturbance itself; given by (−DP)o or BC.
(3) The pressure drop in the piping downstream of the disturbance in excess of that which would

occur in the absence of the fitting; given by (−DP)d or CE. This effect is comparatively large; the
effect of the disturbance is projected over a longer distance in the downstream flow before
fully-developed flow conditions are re-established.

It is not easy to measure each of these pressure drops separately, nor is it necessary, as the
combined effect is what is usually of interest. The total pressure loss chargeable to the disturbance
is given by

(−DP)t = (−DP)u + (−DP)o + (−DP)d. [4]

The total pressure drop given by [4] includes the contribution due to the actual length of the fitting.

Figure 1. Typical axial pressure profile along piping system containing a fitting.
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(−DP)t is also designated as (−DP)i. An alternative expression of the pressure loss due to a fitting
is one which excludes the contribution due to the actual physical length of the fitting. This
‘corrected’ pressure drop is designated by (−DP)c. These are shown in figure 1. The quantity
(−DPS/L) is the pressure gradient for fully-developed flow of the suspension through the straight
pipe.

For fittings resulting in change of cross-sectional area of the flow there is a conversion of velocity
head to pressure head (expansions) and the reverse (contractions). Further, if the piping section
containing the disturbance does not lie wholly in the same horizontal plane, the contribution due
to changes in potential energy must be included. Taking conditions at the upstream section 1 as
the reference, and designating the distance along the axis of the piping section from the reference
point 1 by x, we have from [1]

hf(x)=−(1/r)[P(x)−P1]− g[Z(x)−Z1]− (1/2)[V2(x)−V2
1 ]. [5]

Accordingly, for piping sections in which changes in cross-section and/or elevation are present, the
total head, hf(x), must be plotted against x in figure 1.

As shown in figure 1 the flow is fully developed at the upstream (1) and downstream (2) sections,
and the experimentally measured pressure drop between these two points is (−DP)m. The total
pressure drop across the fitting and that corrected for the physical length of the fitting are given,
respectively, by,

(−DP)t = (−DP)m − (−DPS/L)(Lm −Lf) [6]

(−DP)c = (−DP)m − (−DPS/L)Lm. [7]

1.3. Friction losses, resistance coefficients and equivalent length

Friction losses for fittings are expressed in terms of the so-called resistance coefficients K defined
by

K= hf/(V2/2). [8]

Alternatively, the friction loss can be expressed in terms of the equivalent length of straight pipe
of the same diameter and having the same friction loss as the fitting. The equivalent length is
expressed in numbers of pipe diameters, (Le/D), and is obtained by equating friction loss terms
from [2] with that from [8]:

(Le/D)=K/4f. [9]

It can be shown, using dimensional analysis, that for incompressible Newtonian fluids K is a
dimensionless function of Re and of dimensionless geometric ratios characteristic of the fitting or
valve:

K= fn (Re, geometric ratios). [10]

[10] suggests that the resistance coefficient is the same for all sizes of a given type of fitting
provided dynamic similarity is enforced, i.e. equality of Reynolds number and geometric similarity
are maintained. It is found, however, that K is usually not strongly dependent on Re since, as in
turbulent pipe flow, hf is nearly proportional to V2. Furthermore, economic considerations and
constraints dictated by requirements of standards and structural strength preclude fabrication of
strictly geometrically similar fittings and valves in the different sizes of any given design.

A very extensive tabulation of resistance coefficients for turbulent flow through a broad variety
of piping elements has been compiled by the Crane Company (1980). Table 1 presents a concise
selection of typical approximate values of resistance coefficients for turbulent flow through various
types and sizes of fittings. The K values in this table include the contribution due to the actual
physical length of the fitting, and are clearly to be viewed as typical approximate values. The actual
value of the friction loss in any given instance will depend upon the particular design of the fitting
of any given type, its condition of wear, and its internal surface roughness.
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Table 1. Resistance coefficients for turbulent flow through various fittings

x

1.4. Flow through long bends and coils—fully-developed flows

Analytic treatments of flow through bends are easier when the flow is assumed to be
fully-developed, which presumes the bend to be continuous, long and gradual. The classical
treatment of the slow, fully-developed, laminar Newtonian flow in a curved pipe is due to Dean
(1927, 1928). Various extensions of the approximation due to Dean have been carried out by van
Dyke (1978), Barua (1963), Mori and Nakayama (1965) and Ito (1969). Further results include the
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numerical solution of Collins and Dennis (1975), experimental data by White (1929), Adler (1934),
Keulegan and Beij (1937) and Ito (1959), and the empirical correlation of White (1929). These are
all concerned with laminar flow. Relationships for delineating laminar–turbulent transition in
curved tube flow have been proposed by Ito (1959) and Ward-Smith (1980). For fully-developed
turbulent flow Ito (1959) developed the empirical correlation

fC(D/2rC)1/2 =0.00725+0.076[Re(D/2rC)2]−0.25 [11]

which is good for 0.034 QRe(D/2rC)2 Q 300. In [11] D is the tube diameter, fC is the curved-tube
friction factor, and rC is the radius of curvature of the bend. For (D/2rC)2 Q 0.034 the friction factor
for the curved pipe is virtually identical to that for a straight pipe.

1.5. Flow through bends with long tangents

Short circular-arc bends connected to long straight upstream and downstream tangents are of
greater practical interest. But here while the flow in the tangent lines can be fully-developed, that
within the bend is developing. As a result the analysis of the flow is much more difficult. Of course,
practically, turbulent flow is of most interest. Pressure losses and friction factors for turbulent
Newtonian flow in curved pipes have been determined by Ito (1959, 1960). Using an extensive body
of data on the flow of water through 45°, 90° and 180° bends, Ito (1960) has presented plots in
the form of K/U(2rC/D)1/2 vs Re(D/2rC)2, in which U is the deflection angle of the bend in radians,
and K is the friction loss or resistance coefficient defined in terms of the total head loss ht

attributable to the bend. The head loss is given by

K= ht/(V2/2)= (hc + hd + hL)/(V2/2). [12]

The total head loss in the bend is assumed to be comprised of three components: (1) the loss due
to curvature, hc; (2) the excess loss in the downstream tangent of the bend, hd; and (3) the loss due
to the physical length of the bend. Since the physical length of the bend is L= rCU, the resistance
coefficient, Kexcl., excluding the contribution due to hL, is given by

Kexcl. =K−4fU(rC/D) [13]

in which f is the usual friction factor for flow in a straight pipe.
Ito (1960) further provides the following empirical correlations based on the entire collection of

data:

K=0.03492afCu(2rC/D) for Re(D/2rC)2 Q 91 [14]

K=0.00241auRe−0.17(2rC/D)0.84 for Re(D/2rC)2 q 91 [15]

in which u is the deflection angle of the bend in degrees, i.e. u=(180/p)U, fC is the friction factor
for curved-tube flow given by [11], and a depends on the relative radius as follows:

u=45°: a=1.0+14.2(2rC/D)−1.47 [16a]

u=90°: a=0.95+17.2(2rC/D)−1.96 for (2rC/D)Q 19.7 [16b]

u=90°: a=1.0 for (2rC/D)q 19.7 [16c]

u=180°: a=1.0+116(2rC/D)−4.52. [16d]

1.6. Flows with changes in cross-section and shape of flow passage

The flow path through contractions, expansions and the Venturi meter involve changes in
cross-sectional area. The flow through valves usually involves a combination of changes in flow
path, including cross-section, shape and direction. Friction losses for flow through valves are
expressed in terms of the resistance coefficient, K, defined by [8]. We employed only two types of
valves in this study; the gate and globe valves. These, however, represent the limits of low and high
resistances, respectively, and are the bases of most valve designs.

Losses associated with the laminar flow of non-Newtonian fluids through sudden contractions
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and enlargements are important in capillary rheometry (Boger et al. 1978; Macagno and Hung
1967; Halmos et al. 1975). For fully turbulent Newtonian flow through a sudden expansion the
friction loss is given by (Bird et al. 1960)

Kexpn. = hf/[V2
1 /2]= (1− b2)2 [17]

where b=(D1/D2)Q 1 is the ratio of upstream to downstream pipe diameters, and V1 is the velocity
in the smaller (upstream) pipe. For turbulent flow in a sudden contraction, the friction loss is given
by (Turian et al. 1983)

Kcontr. = hf/[V2
2 /2]=0.45(1− b2)2 [18]

in which now b=(D2/D1)Q 1 is the ratio of downstream to upstream pipe diameters, and V2 is
the velocity in the smaller (downstream) pipe.

To correlate the resistance coefficients for various fittings over the entire range of Reynolds
numbers, Hooper (1981) proposed the use of two limiting values of coefficients K1 and Ka such
that

K=(K1/Re)+Ka. [19]

Thus K1 0K for Re=1, since Ka�K1, and K=Ka as Re : a. Clearly, this does not signify that
[19] is valid to Re values as low as 1. Indeed, this form is only applicable to large Reynolds numbers.
A listing of values of K1 and Ka for various fittings is given by Hooper (1981).

Application of the macroscopic balances for flow through a Venturi meter with a throat diameter
D2 in a pipe of diameter D1 gives for the mass rate of flow, w

w= r0p4 D2
11V1 =CvA2$2(P1 −P2)r

1− b4 %
1/2

[20]

in which b=(D2/D1)Q 1 is the ratio of the throat to pipe diameter, A2 = (pD2
2 /4). The parameter

Cv is the discharge coefficient which, as the ratio of the mass flow rate in the actual flow to that
in the ideal situation, accounts for the friction losses and the fact that velocity profiles across the
sections 1 and 2 may not be flat. The loss in a Venturi meter is usually small, and Cv 0 0.95–0.98.
An analysis of the incompressible fluid flow through a Venturi meter using the macroscopic
balances gives

Cv = & 1− b4

a2 − a2b
4 +0DPloss/

1
2

rV2
21'

1/2

[21]

in which a= u3/ū3 is the kinetic energy correction factor and DPloss = rhf is the irreversible loss of
pressure due to friction. A summary of investigations of the flow through Venturi and
differential-pressure flowmeters has been presented by Benedict (1977, 1980). Boundary-layer
analyses for laminar and turbulent flow in a Venturi give the following relations:

Cv =$ 1− b4

1− b2 +9.7158b1/2Re−1/2 −0.4505b4Re−1/5%
1/2

for Ret Q 1×105 [22]

Cv =$ 1− b4

1− b4 + (0.17b1/5 −0.4505b4)Re−1/5%
1/2

for Ret q 1×105 [23]

in which Re=Re1 and Ret =Re2 are Reynolds numbers based on velocities and diameters in the
pipe (inlet) and throat sections, respectively; Re=bRet.
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1.7. Flow of non-Newtonian fluids and suspensions through complex geometries

Non-Newtonian flow through complex geometries is clearly of practical interest owing to the
industrial importance of polymer processing operations. Studies on friction losses for the flow of
non-Newtonian fluids and/or suspensions through bends, fittings, valves and flow meters are scarce.
Some studies on the laminar flow of non-Newtonian, including viscoelastic, fluids through
contractions have been carried out (Boger et al. 1978). These were motivated by the needs of
rheometry. Among the few studies involving turbulent flow are those by Harris and Magnall (1972)
on the flow of aqueous solutions of carboxymethyl cellulose and polyacrylamide in a 5.0 cm
pipeline containing several sizes of orifice meters and one Venturi meter. Their attempt to correlate
discharge coefficients using the Metzner and Reed generalized Reynolds number was evidently not
successful. However, plots of log DP vs log V resulted in parallel straight lines for the different
orifice to pipe diameter ratios. No analogous trends could be established for the Venturi meter
because data for only one device were available. Brook (1962) used the Venturi, the orifice, the
90° bend and the vertical counterflow meters to measure velocities and concentrations of
suspensions. His conclusion was that the Venturi meter was the most accurate device of the four
for use with suspensions, and that the best installed position was vertical. Shook and Masliyah
(1974) studied the effect of slip associated with large and dense suspended particles on the discharge
coefficient of the Venturi meter, and found that under such conditions the coefficient could be larger
than one. For suspensions of fine particles the discharge coefficient can be predicted using the same
equations as for the single phase fluid provided the suspension density is used (Brook 1962;
Herringe 1977; Hanson et al. 1982). This is, of course, only true in turbulent flow. Mukhtar et al.
(1995) report pressure drops for flow of water and of slurries of iron ore slimes and zinc tailings
through a single 90° long radius bend. The measurements are made just across the bend, and no
attempt seems to have been made to measure pressure losses along connecting tangent lines,
although a long upstream tangent line is reported to have been provided. In a much more extensive
investigation, Turian et al. (1983) considered the flow of settling noncolloidal suspensions of coarse,
dense particles in water through an array of 2.5 and 5.0 cm bends, fittings, and valves. They found
that friction losses for turbulent slurry flow could be predicted from the asymptotic values for
single-phase flows provided the slurry density is used.

2. FRICTION LOSSES FOR FLOW OF SLURRIES THROUGH PIPING ELEMENTS

Experiments on the flow of the laterite and gypsum slurries through 2.5 and 5.0 cm bends,
fittings, valves and Venturi meters were carried out. The array of piping elements used in this study

Table 2. Bends, fittings, valves and flowmeters used in slurry flow experiments

2.5 cm pipe: D=2.664 cm 5.0 cm pipe: D=5.250 cm

Bends Bends
45° elbow, standard 45° elbow, standard
90° elbow, mitre (rC =0)† 90° elbow, mitre (rC =0)
90° elbow, standard (rC =3.8 cm) 90° elbow, standard (rC =5.7 cm)
90° elbow, smooth (rC =11.4 cm) 90° elbow, smooth (rC =22.9 cm)
90° elbow, smooth (rC =21.6 cm) 90° elbow, smooth (rC =43.2 cm)
90° elbow, smooth (rC =31.8 cm) 90° elbow, smooth (rC =63.5 cm)
180° open-pattern return bend 180° open-pattern return bend

Valves Valves
Gate valve Gate valve
Glove valve Glove valve

Venturi meters Venturi meters
b=0.5 and b=0 75‡ b=0.5 and b=0.75

Fittings
2.5×5.0 cm2 sudden enlargement
2.5×5.0 cm2 sudden contraction

†rC is the radius of curvature of the bend.
‡b is the ratio of throat to pipe diameter.
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Table 3. Mean resistance coefficients for turbulent flow of water in 2.5 cm fittings

Fitting K� (T) =K� a† =%Dev.=‡ No. data Table 1

45° elbow, standard 0.81 2 0.132 6.1 60 0.37
90° elbow (rC =0) 1.662 0.158 3.8 57 1.38
90° elbow (rC =3.8 cm) 1.112 0.163 6.1 55 0.69
90° elbow (rC =11.4 cm) 0.772 0.083 4.2 17 0.34
90° elbow (rC =21.6 cm) 0.952 0.123 5.1 44 0.59
90° elbow (rC =31.8 cm) 1.212 0.175 5.9 14 0.81
180° return 1.07 2 0.104 3.9 43 1.15
Gate valve 0.80 2 0.120 6.2 36 0.18
Globe valve 10.0 2 0.750 3.0 58 7.82

†K� (T) =K� a =22s, signifying 95% confidence limit.
‡=%Dev.==average absolute per cent deviation from mean.

is listed in table 2. These piping elements were incorporated within several 2.5 and 5.0 cm test flow
loops in our slurry pipeline facility. A detailed description and diagrams of this pilot facility are
given by Ma (1987). In our experimental design each piping element was installed between long
upstream and downstream developing sections, referred to as tangent lines, which consisted of
straight pipe sections of the same diameter as the element. The axial pressure distributions along
upstream and downstream tangents were measured using multitube differential mercury
manometers. Flow loops containing long straight-pipe test sections, consisting of 1.25, 2.5 and
5.0 cm diameter galvanized as well as black steel pipe, were also part of the slurry flow facility,
as described in our earlier paper on flow through straight pipe. They were used to measure
straight-pipe flow pressure drops for each slurry flow rate through each of the fittings (see Turian
et al. 1997).

2.1. Resistance coefficients including and excluding contribution due to fitting length—K and Kexcl .

Experimental determination of the resistances for fittings and valves is ordinarily carried out by
measuring the overall friction loss for a system made up of two or more lengths of straight pipes
connected in series by a number of fittings or valves of the same internal diameter. To obtain the
loss due to the fitting or valve only, the losses in the straight pipes are subtracted from the overall
friction loss. In this work the pressure drop between the upstream and farthest downstream
pressure taps is taken as the overall pressure drop for the entire system containing the test fitting.

In pipeline design the overall length of straight pipe in the system may be calculated in one of
two ways; depending upon whether or not the physical lengths of the bends, fittings and valves
are included. If the physical lengths of these piping elements are included in the total length of
straight pipe, then the friction losses, or resistance coefficients, for the individual flow elements must
exclude a contribution corresponding to friction loss in a straight pipe of length equal to the
physical length of the fittings. Referring to figure 1, this friction loss corresponds to the pressure
drop given by C0C'. According to figure 1, the total distance, measured along the axis of the system
from upstream to downstream pressure taps including the fitting, is Lm, and the total length of
straight pipe is therefore (Lm −Lf). Thus, we have

K=
1

0121rV2
$−DPm − (Lm −Lf)0−DP

L 1S% [24]

and

Kexcl. =
1

0121rV2
$−DPm −Lm0−DP

L 1S% [25]

in which (−DP/L)S is the axial pressure gradient for fully-developed flow in the straight section
of pipe containing the fitting. Detailed results on the flow of water and of the test slurries through
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straight pipe are presented in the first part (Turian et al. 1997). In terms of the friction factor f
for flow through straight pipe, the relationship between these resistance coefficients is given by

K=Kexcl. + 4f(Lf/D). [26]

2.2. Friction losses for flow of water through bends and fittings

Data on the flow of water through all the piping elements listed in table 2 were taken over the
entire range of flow rates before and after each series of tests involving each test slurry. Our
collection of baseline water data for each piping element is quite large, providing both a calibration
for each fitting, and the basis for assessing inherent variability of measured resistance coefficients.

Figure 2. Resistance coefficients K vs Rem for standard 45° elbows.
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Figure 3. Resistance coefficients K vs Rem for 90° mitre bends (rC/D=0).

The mean resistance coefficients for flow of water through the 1 and 2 in bends and valves are given
in tables 3 and 4. All water flow data were in the turbulent flow regime, with Reynolds numbers
ranging from 2×104 to 3.3×105.

The friction loss coefficients for different flow rates for flow of water for each piping
element varied about the mean value. The per cent deviations from the mean values were
approximately normally distributed about 0. The mean resistance coefficients, K� (T), for water
in fully-developed turbulent flow through the 1 and 2 in test bends and valves, given in tables
3 and 4, include the loss due to the length of the fitting. The absolute average per cent
deviation, =%Dev.=, signifies the average of the absolute values of deviations from the mean, and
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is given by

=%Dev.==average absolute % dev.=
(S=K−K� =/K� )

N
×100. [27]

The standard deviation is defined by

s=standard deviation=$(S=K−K� )2

N−1 %
1/2

[28]

in which N is the total number of data points.

Figure 4. Resistance coefficients K vs Rem for 90° standard bends (rC/D=2.25).
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Figure 5. Resistance coefficients K vs Rem for 90° bends (rC/D=4.5).

For comparison we also include typical K� values from table 1, which are strictly applicable to
turbulent flow. As stated before, these handbook values constitute typical approximate mean values
that are merely representative. Strictly, they do not apply to our particular test fittings. Nonetheless,
our measured mean resistance coefficients are in most cases quite close to the handbook values
abstracted in table 1.

A further check on our results for water was to test them against Ito’s (1960) correlations for
turbulent flow through bends, given by [14]–[16]. The values of K� a given in tables 3 and 4 are the
means of large numbers of K vs Re data for the flow of water through each piping element. These
primary K vs Re data, which will be presented in plots to be given later, are, therefore, appropriate
for such a test. Ito's correlations were mainly found to underestimate our experimentally
determined resistance coefficients; in some cases by up to a factor of two. It should be noted that
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[14]–[16] were based on data taken using especially fabricated bends made of hydraulically smooth
tubing stock. In our experiments we used standard 1 and 2 in (2.5 and 5.0 cm) off-the-shelf 45°,
90° and 180° commercial pipe elbows, and 90° pipe bends of different radii of curvature fabricated
from commercial, straight steel piping stock. Our bends had surface roughness, which is not
accounted for in Ito’s correlations.

The K� vs (rC/D) results for the 90° bends seem to decrease to a minimum as (rC/D) increases
from the value 0 for the mitre bend, and then to increase with further increase in (rC/D). This is
as expected. At first as (rC/D) increases from the value 0 for the mitre bend, there is a net decrease
in friction loss resulting from the fact that the change in direction of the flow is becoming gentler.
This happens because the contribution to the total loss due to curvature, hc, at first decreases more
rapidly than the increase in the contribution due to the physical length of the fitting, hL (see [12]).

Figure 6. Resistance coefficients K vs Rem for 90° bends (rC/D=8.5).



D.R. 845284—MF 24/2 (Issues)————MS 376

FLOW OF CONCENTRATED NON-NEWTONIAN SLURRIES: 2 257

Figure 7. Resistance coefficients K vs Rem for 90° bends (rC/D=12.5).

Eventually, however, the rate of increase in the contribution due to increasing length of the fitting,
as (rC/D) increases further, exceeds the rate of decrease in the contribution due to curvature. The
minimum in the K� vs, (rC/D) dependence for our water data in tables 3 and 4 occurs at about
(rC/D)0 4.5, which is about the same value obtained with plots using the values from table 1.

A few important observations need to be noted in view of these water flow data. The absolute
average per cent deviations of the resistance coefficients from the mean values ranged between
about 3% and 15%, with the highest per cent deviations being associated with the piping elements
having the lowest frictional losses, and/or at the lower flow velocities. Of course, this is partly
because there is a limit to the level of attainable accuracy, in absolute terms, with such
measurements. Furthermore, when the K vs Re data for each element are compared with the mean
values, or are plotted as will be done below, it is found that the main body of the data falls mainly
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within a 20% band around the mean value. This level of scatter in the measured values of K seems
to be inherent to Newtonian flow through such complex geometries, since it is observed with
replicated data, and since it seems not to be due to any discernible systematic variation with
Reynolds number, except, of course, when there is a change in flow regime. The presence of a
disturbance in the flow path may lead to increased turbulence, secondary flows, vortex formation
and flow separation, depending upon the severity of the disturbance to the flow. The associated
overall frictional losses may not be fully controllable inasmuch as the onset of some of these flow
phenomena may be sensitive to subtle differences in experimental conditions (as well as the current
condition of the device), and most likely so near transition conditions. The additional presence of
suspended solids, and the appearance of non-Newtonian behavior, may reinforce these effects.

Figure 8. Resistance coefficients K vs Rem for 180° open-pattern return bends.
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Figure 9. Resistance coefficients K vs Rem for gate valves.

Accordingly, there seems to be an intrinsic limit to the level of reproducibility attainable in the
measurement of resistance coefficients for such flows. These constraints will be useful as references
against which our results for non-Newtonian suspension flow through complex geometries are
assessed.

2.3. Flow of non-Newtonian slurries through bends and valves

We present first our results for the flow of the laterite and gypsum suspensions through the bends
and valves. The results for the expansion, contraction and the Venturi meters will be presented
afterwards. From the preceding discussion one would presume that the difference between the two
values of the resistance coefficients, defined by [24]–[26], is that the coefficient Kexcl. accounts strictly



D.R. 845284—MF 24/2 (Issues)————MS 376

R. M. TURIAN et al.260

Figure 10. Resistance coefficients K vs Rem for globe valves.

for only the additional loss (over that attributable to fully-developed flow through a straight pipe
of the same physical length) arising from such flow disturbance-induced effects as increased
turbulence, secondary flows, vortices or flow separation. We will, therefore, present results in terms
of both K and Kexcl. values.,

The experimental K values for each fitting were determined for different suspension flow
velocities by measuring the axial pressure distributions along the fitting and its tangent lines. For
each measurement, the temperature of the fluid and the pressure drop along a test section of straight
pipe of the same diameter as the fitting were also determined. For each piping element the
experimental K values were plotted, using logarithmic scales, against Rem and also against Rea.
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Table 4. Mean resistance coefficients for turbulent flow of water in 5.0 cm fittings

Fitting K� (T) =K� a† =%Dev.=‡ No. data Table 1

45° elbow, standard 0.51 2 0.110 9.2 51 0.30
90° elbow (rC =0) 1.392 0.165 4.6 82 1.14
90° elbow (rC =5.7 cm) 0.662 0.129 7.7 78 0.57
90° elbow (rC =22.9 cm) 0.502 0.130 9.2 75 0.28
90° elbow (rC =43.2 cm) 0.532 0.168 10.2 56 0.48
90° elbow (rC =63.5 cm) 0.702 0.110 6.0 43 0.66
180° return 0.54 2 0.144 9.5 80 0.95
Gate valve 0.17 2 0.061 15.4 68 0.15
Globe valve 6.72 2 0.584 3.4 85 6.46

†K� (T) =K� a 2 2s, signifying 95% confidence limit.
‡=%Dev.==average absolute per cent deviation from mean.

Table 5. Comparison of predicted and measured K(L) for laminar suspension flow through 2.5 and 5.0 cm fittings

K(L) =F/Rem

Re*m
Range No. of Abs. av. No. in

Fitting F Rem ×10−2 data % dev.† 0% band 2.5 cm 5.0 cm

45° elbow, standard 700 0.86–13.5 32 43.2 14 867 1383
90° elbow (rC/D=0) —‡ — — — — — —
90° elbow (standard) 900 0.82–12.6 30 60.0 12 807 1353
90° elbow (rC/D=4.5) 660 0.86–12.5 24 32.5 15 862 1333
90° elbow (rC/D=8.5) 1400 2.40–24.5 44 24.4 31 1472 2622
90° elbow (rC/D=12.5) 1800 1.14–24.5 47 21.1 36 1486 2575
180° return 800 0.86–14.7 26 41.2 14 747 1473
Gate valve 320 1.12–18.5 27 47.1 9 402 1905
Globe valve —‡ — — — — — —

†Absolute average of per cent deviation between predicted and measured K.
‡Data in laminar flow could not be obtained for these high-loss devices.

Table 6. Mean K� (T) for turbulent suspension flow through 2.5 cm fittings

Range No. of Abs. av. No. of data in
Fitting K(T) =K� a Rem ×10−3 data % dev.† 30% dev. band.

45° elbow, standard 0.81 0.89–126 175 22.1 134
90° elbow (rC =0) 1.66 4.11–126 130 7.0 126
90° elbow (rC =3.8 cm) 1.11 0.82–126 171 19.2 140
90° elbow (rC =11.4 cm) 0.77 0.89–119 130 28.1 87
90° elbow (rC =21.6 cm) 0.95 1.56–132 140 20.5 100
90° elbow (rC =31.8 cm) 1.21 1.56–126 118 12.4 106
180° return 1.07 0.79–126 160 13.6 138
Gate valve 0.80 0.42–119 157 18.3 128
Globe valve 10.0 0.09–132 169 6.9 168

†Absolute average per cent deviation of K(T) from mean K� a.

Table 7. Mean K� (T) for turbulent suspension flow through 5.0 cm fittings

Range No. of Abs. av. No. of data in
Fitting K(T) =K� a Rem ×10−3 data % dev.† 30% dev. band

45° elbow, standard 0.51 1.47–328 174 20.9 136
90° elbow (rC =0) 1.39 4.22–328 190 8.6 181
90° elbow (rC =5.7 cm) 0.66 1.47–328 209 23.4 155
90° elbow (rC =22.9 cm) 0.50 1.47–328 181 20.5 133
90° elbow (rC =43.2 cm) 0.53 2.65–328 165 17.0 146
90° elbow (rC =63.5 cm) 0.70 2.65–328 152 11.4 145
180° return 0.54 1.55–328 216 19.9 174
Gate valve 0.17 2.02–328 177 26.5 115
Globe valve 6.72 0.11–328 240 5.5 236

†Absolute average per cent deviation of K(T) from mean K� a.
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Table 8. Resistance coefficients Kexcl. for laminar and turbulent suspension flow through 2.5 and 5.0 cm fittings

Laminar flow Turbulent flow
Kexcl. (L) =FRe−l

m Kexcl. (T) =K� excl.a

Fitting F l 1 in 2 in

45° elbow, standard 150.5 0.701 0.76 0.50
90° elbow (rC/D=0) 12.88 0.242 1.62 1.33
90° elbow (standard) 36.81 0.441 1.04 0.62
90° elbow (rC/D=4.5) 76.40 0.678 0.63 0.39
90° elbow (rC/D=8.5) 310.4 0.884 0.70 0.30
90° elbow (rC/D=12.5) 61.64 0.665 0.84 0.40
180° return bend 90.77 0.629 1.00 0.48
Gate valve 1289.0 1.255 0.80 0.15
Globe valve† — — 10.0 6.65
2×1 in2 contraction 142.4 0.763 0.230
1×2 in2 expansion 115.1 1.000‡ 0.5512

†Data in laminar flow could not be obtained for the high-loss devices.
‡For the expansion Kexcl. (L) =0.5512+FRe−1

m .

Rem is the generalized Reynolds number given by

Rem =Dn'V(2− n')r/[8(n'−1)K '] [29]

in which n' is the local slope of the log (DDP/4L) vs log (8V/D) curve for the suspension, and
Rea =DVr/ha (see Turian et al. 1997).

The shapes of K vs Re curves, using Rem or Rea, turned out to be similar for each piping element;
namely, the data points for the low-Re, laminar-flow range seemed to be scattered about a straight
line of slope −1, and those for the high-Re, turbulent-flow regime seemed to define a horizontal
line having the constant asymptotic value K� a. Aside from this, there were three additional findings.

(1) when the data for the two sizes for each fitting were superimposed, the data in the laminar
flow range overlapped, being scattered around the same straight line, on logarithmic scales, given
by [30] below.

(2) For each fitting the turbulent-flow, horizontal-line asymptotes K� a were different for the two
sizes.

(3) The value of K� a for each size of fitting turned out to be the same as the corresponding
turbulent-flow resistance coefficient for the flow of water, given in tables 3 and 4.

The difference between the two types of plots, using the two different Re definitions, resides in
the fact that the Reynolds number Rea is perhaps less meaningful, since the viscosity parameter
ha, by itself, does not embody the full rheological characteristics of the fluid, and surely not in

Figure 11. Resistance coefficient Kcontr. vs Rem for 5.0×2.5 cm2 concentric contraction.
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Figure 12. Resistance coefficient Kexpn. vs Rem for 2.5×5.0 cm2 concentric expansion.

the laminar flow range. In the turbulent regime, since the asymptotic value of K is found to be
constant in any event, the type of Reynolds number definition is irrelevant, except in delineating
the point of laminar–turbulent transition for the particular type of piping element.

The friction loss data for water and suspension flow through our test bends and valves are given
in figures 2 to 10 as plots of K against Rem. For each type of fitting the data is presented in one
figure, the two parts of which are designed to separate the plots for the two sizes, although the

Figure 13. Detailed diagram of Venturi meters.
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Figure 14. Discharge coefficients Cv vs Rem for 2.5 cm2 Venturi meters.

data in laminar flow do overlap. Figure 2 presents the data for the 45° standard bends, figures 3–7
present the data for the 90° bends of different radii of curvature, figure 8 presents the data for the
180° open-pattern return bend, and figures 9 and 10 present the data for the gate and globe valves,
respectively.

The findings described in the foregoing lead to the following correlation for the resistance
coefficients for laminar suspension flow through the 2.5 and 5.0 cm bends and valves:

K=K(L) =A/Rem for Rem ERe*m. [30]

The parameter A in the correlation [30] was found to have the same value for the two sizes of
each type of bend or valve. The Reynolds number Re*m represents the laminar–turbulent transition
value for the fitting, which turns out to be different for the two sizes of each type of fitting. The
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values of A for the different test bends and valves, and of Re*m for the two sizes of fittings, are given
in table 5.

The resistance coefficients for turbulent suspension flow, K(T), through the 1 and 2 in bends and
valves are given in tables 6 and 7 as K� a. These are the same as the mean resistance coefficients
for turbulent flow of water designated as K� a in tables 3 and 4. Accordingly, we have for turbulent
non-Newtonian suspension flow through fittings the relation

K(T) =K� (T) =K� a for Rem qRe*m. [31]

We also plotted the experimentally determined, Kexcl., defined by [25], for each fitting against the
two Reynolds Rem numbers and Rea using logarithmic scales. As in the case of the K vs Re plots
described in the foregoing, the data points in the laminar range were scattered about a straight

Figure 15. Discharge coefficients Cv vs Rem for 5.0 cm2 Venturi meters.
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Table 9. Discharge coefficients, Cv, for water and suspension flow through 2.5 and 5.0 cm
Venturi meters

Venturi meter 2.5 cm 5.0 cm

b=Dt/D 0.50 0.75 0.50 0.75
Cvrange† 0.91–0.95 0.92–1.00 0.95–1.00 0.96–1.05
Average C� v 0.93 0.96 0.97 1.01
Re*m 400 1000 700 1000

†Range of variation of Cv values about mean in turbulent flow; Rem qRe*m.

line, which was the same for both sizes of fittings, but instead of having a slope of −1, as in [30],
the slopes (=− l) were slightly larger for all fittings except the gate valve, i.e. 0 Q lQ 1. However,
the Kexcl. vs Re had more scatter than the K vs Re plots. This is due to the fact that the resistance
coefficients Kexcl., being the differences between two quantities, which are for most of the fittings
about the same magnitude, are subject to larger relative error. The equation for Kexcl. (Rem) for
laminar, non-Newtonian suspension flow through bends and fittings is given by

Kexcl. (L) =FRe−l
m for Rem ERe*m [32]

where the constants F and l, which are the same for the two sizes of each type of fitting, are listed
in table 8. The transition Reynolds numbers, Re*m, are the same as for [30], and are listed in
table 5.

In turbulent flow it was found that the resistance coefficients, Kexcl. (T), for all bends and valves
of the same size and type and all test fluids, water as well as suspensions, were scattered about
the same horizontal asymptote, having the constant value given by

Kexcl. (T) =K� excl.a for Rem qRe*m. [33]

Values of K� excl.a are given in table 8. They are related to K� a through [26].

2.4. Flow of non-Newtonian slurries through expansions and contractions

As in all the preceding, in considering flows through contractions and expansions we designate
the upstream section by numeral 1 and the downstream by 2. Resistance coefficients for both
expansion and contraction are defined in terms of the velocity in the smaller cross-section.

Applying the macroscopic mechanical energy balance [1] to flow through a contraction, we get

Kcontr. = [hf/(V2
2 /2)]= [−DP/(rV2

2 /2)]+ (b4 −1) [34]

in which b=(D2/D1)Q 1. For our 2.5×5.0 cm2 (2×1 in2 standard pipe) concentric contraction,
b=(1.049/2.067)=0.5075. For turbulent Newtonian flow through a sudden contraction a rough
estimate that is used is Kcontr. 0 0.5, while the value for a rounded entrance can be as low as 0.1.
Our water flow data give a mean value of Kcontr. = 0.23, which is evidently the same as the
high-Reynolds number asymptote for all data on suspensions as shown in the logarithmic plot in
figure 11. It appears from this plot that the data in the low-Reynolds number range, though
somewhat sparse, follow the same sort of Reynolds number dependence as that of K for laminar
flow through bends. The transition from laminar to turbulent regimes takes place at about
Rem 0 3900, although the range between about 4×103 and 1×105 may well represent a transition
region. The relationships for laminar and turbulent flow through a contraction are given by

Kcontr. (L) =900/Rem for Rem E 3900 [35]

Kcontr. (T) =K� contr.a =0.23 for Rem q 3900. [36]

For the sudden enlargement [1] gives

Kexpn. = [hf/(V2
1 /2)]= [−DP/(rV2

1 /2)]+ (1− b4) [37]

in which b=(D1/D2)Q 1. For our 2.5×5.0 cm2 (1×2 in2 standard pipe) concentric expansion
b=0.5075. For turbulent Newtonian flow through a sudden expansion, one can derive the
approximate relation (Bird et al. 1960, p. 219)

Kexpn. (T) = hf/(V2
1 /2)]1 (1− b2)2. [38]
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For Newtonian flow through our 2.5×5.0 cm2 test expansion [38] gives Kexpn. (T) =0.5512. The
experimental Kexpn. values, constituting a total of 152 data points, are given in the plot against Rem

in figure 12. The solid curve in this plot has the equation

Kexpn. =115.1/Rem + (1− b2)2. [39]

From the plot in figure 12 it is somewhat difficult to ascertain the value of Rem for which the first,
laminar flow term in [39] becomes negligible in comparison with the turbulent flow term. However,
the first term on the right-hand side of the equation is about 5% of the turbulent flow term,
(1− b2)2 =0.5512, when Rem 0 4180.

2.5. Flow of non-Newtonian suspensions through Venturi meters

Flow rates of water and non-Newtonian suspensions through 2.5 and 5.0 cm Venturi meters with
throat to pipe diameter ratios of 0.50 and 0.75 were measured over a broad range of Reynolds
numbers. Because the main interest is with suspension systems, which often have varying tendencies
to settle, we ran experiments with the Venturi meters installed in a vertical orientation with the
flow directed upwards. Such an arrangement is most suitable for highly settling, coarse particle
slurry flows (Turian et al. 1983). As a check, we also ran experiments on the flow of the 5.7 and
8.3 vol.% laterite suspensions through the 5.0 cm Venturi meter with b=0.75 in a horizontal
orientation, partly because we had obtained discharge coefficients exceeding 1 with this device
installed in the vertical orientation. We found no discernible difference in the data that could be
attributed to orientation, as discharge coefficients exceeding 1 were obtained regardless of the
orientation of the meter. This finding is not new. It may be a manifestation of drag reduction,
though this has not been definitively established. The discharge coefficient for flow through a
horizontally-oriented Venturi meter is defined by [20] in which, as usual, subscript 1 refers to the
inlet section and subscript 2 refers to the Venturi throat. The only modification needed for a
vertically-oriented Venturi meter with the flow in the upward direction is to replace
(P1 −P2)=−DP by (P	 1 −P	 2)= (P1 −P2)− (rgDZ) in [20]. Note that DZ=(Z2 −Z1)q 0 since
the flow is in the upward direction.

For Newtonian fluids it is known that Venturi meters are most suitable for fully-developed
turbulent flow, when the discharge coefficient approaches a constant asymptotic value, usually
about Cv 0 0.95–1.0. The value of the discharge coefficient depends upon the particular design of
the Venturi meter. The devices used in our studies were purchased ready-made, of stainless steel
construction, having a special commercial design aimed at minimizing overall length. They are
strictly suitable for turbulent flow service. Figure 13 provides a schematic diagram and detailed
dimensions of the commercial Venturi meters used in our studies.

Figures 14 and 15 provide plots of the experimental discharge coefficients against Reynolds
number for the flow of water and the laterite and gypsum suspensions for the 1 and 5.0 cm Venturi
meters, respectively. Table 9 lists the asymptotic mean values of the discharge coefficients, C� v, their
variation or range about this mean and the transition Reynolds number delineating the turbulent
flow regime.

3. CONCLUSIONS

The principal results in this work include the finding that the resistance coefficients for
non-Newtonian suspension flow through bends of various angles and radii of curvature, and
through valves decrease with increasing Reynolds number in the laminar flow regime. Resistance
coefficient values for laminar flow which included the friction loss contribution attributable to the
length of the fitting, K(L), were found in general to be inversely proportional to the generalized
Reynolds number. The dependence for the corresponding coefficients, Kexcl. (L), excluding the
contribution equivalent to the loss for fully-developed flow through a straight pipe having the same
length as the physical length of the fitting were also in general found to vary inversely with Reynolds
number, but to a somewhat smaller power than 1. The two resistance coefficients are related by
[26]. If we combine [30] and [26], and use f=16/Rem for fully-developed, laminar suspension flow
through a straight pipe, we formally get

Kexcl. (L) = [A−64(Lf/D)]/Rem. [40]
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The form of [40] for bends of bend angle U radians is obtained from [13] as

Kexcl. (L) = [A−64(rCU/D)]/Rem. [41]

Accordingly, [40] and [41] could be used as alternatives to [26]. The power l in [26] is generally
less than unity as it is obtained by a complete refitting of the Kexcl. (L) vs Rem data. In the present
work we used [25] directly to determine Kexcl., using the experimentally measured pressure gradient,
(−DP/L)S, for flow in a straight pipe of the same diameter and material as the fitting.

The two coefficients, K and Kexcl., are equal for the mitre bend since rC =0. It was indicated
earlier, in reference to [30] and table 5, that we could not obtain data in the laminar flow regime
for this high-loss bend. In fact the K values for this fitting over the lower Reynolds number range,
before the asymptotic value for fully-developed turbulent flow had been attained, did decrease with
increasing Reynolds number, but at a much slower rate than to the inverse power given by [41].
This suggests that this lower Reynolds number range corresponds to a transition region between
fully laminar and fully turbulent flows. Indeed, the difference in the dependence given by [32] and
that in [40] or [41] may well be due to the fact that the lower Reynolds number ranges to which
these laminar-flow resistance coefficients belong includes a transition region. Clearly, the values of
the coefficients Kexcl. (L) would be more sensitive to the existence of a transition region. We view the
correlation forms given by [30] and [32] as useful approximations. Their further refinement would
require flow data using precisely designed and fabricated bends and fittings, although such model
experimental devices have little practical relevance. Considering the variability in design of
commercially available flow devices, and the fact that resistance coefficients for laminar flow
through fittings are not usually called for, the approximations presented in this work are not only
quite adequate, they are very useful.

The finding that the resistance coefficients for all the bends, the valves and the sudden contraction
and expansion, and additionally the finding also that the discharge coefficients for all the Venturi
meters, in fully-developed turbulent flow, all approach constant asymptotic values which are the
same as for the corresponding coefficients for flow of water is very significant. It is because this
means one can establish the turbulent-flow friction-loss characteristic for any flow element using
data with water. Then, one only need use the density of the suspension to calculate the applicable
friction loss. It has been observed earlier that bend, fitting and valve designs vary with manufacturer
and with size. Therefore, individual determination of loss characteristics is often inevitable.

The existence of high-Reynolds number asymptotic values of resistance coefficient is due to the
fact that inertial forces predominate over other forces in the fully turbulent flow regime. Indeed,
inertial effects turn out to be more prominent for flow through complex geometries than for the
straight pipe (Turian et al. 1997) because of enhanced turbulence. The findings in the present work
confirm for non-Newtonian suspensions what we had also discovered earlier in relation to
heterogeneous, dense- and/or coarse-particle slurries (Turian et al. 1983). These heterogeneous
slurries were not amenable to rheological characterization; they settled too fast. Furthermore, we
could not get friction-loss data in the laminar flow regime with these dense/coarse-particle slurries,
as excessive settling led to unsteady conditions.
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